Rotation matrix

Theory, Springer, ISBN 978-1-85233-470-3 

Bar-Itzhack, Itzhack Y. (Nov.ec. 2000), “New method for extracting the quaternion from a rotation matrix”, AIAA Journal of Guidance, Control and Dynamics 23 (6): 10851087 (Engineering Note), doi:10.2514/2.4654, ISSN 0731-5090 

Bjrck, A.; Bowie, C. (June 1971), “An iterative algorithm for computing the best estimate of an orthogonal matrix”, SIAM Journal on Numerical Analysis 8 (2): 358364, doi:10.1137/0708036, ISSN 0036-1429 

Cayley, Arthur (1846), “Sur quelques proprits des dterminants gauches”, Journal fr die Reine und Angewandte Mathematik (Crelle’s Journal), 32: 119123, ISSN 0075-4102 ; reprinted as article 52 in Cayley, Arthur (1889), The collected mathematical papers of Arthur Cayley, I (18411853), Cambridge University Press, pp. 332336, http://www.hti.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;rgn=full text;idno=ABS3153.0001.001;didno=ABS3153.0001.001;view=image;seq=00000349 

Diaconis, Persi; Shahshahani, Mehrdad (1987), “The subgroup algorithm for generating uniform random variables”, Probability in the Engineering and Informational Sciences 1: 1532, ISSN 0269-9648 

Eng, Kenth (June 2001), “On the BCH-formula in so(3)”, BIT Numerical Mathematics 41 (3): 629632, doi:10.1023/A:1021979515229, ISSN 0006-3835, http://www.ii.uib.no/publikasjoner/texrap/abstract/2000-201.html 

Fan, Ky; Hoffman, Alan J. (February 1955), “Some metric inequalities in the space of matrices”, Proc. AMS 6 (1): 111116, doi:10.2307/2032662, ISSN 0002-9939 

Fulton, William; Harris, Joe (1991), Representation Theory: A First Course, GTM, 129, New York, Berlin, Heidelberg: Springer, MR1153249, ISBN 978-0-387-97495-8 

Goldstein, Herbert; Poole, Charles P.; Safko, John L. (2002), Classical Mechanics (third ed.), Addison Wesley, ISBN 978-0-201-65702-9 

Hall, Brian C. (2004), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, ISBN 978-0-387-40122-5  (GTM 222)

Herter, Thomas; Lott, Klaus (Septemberctober 1993), “Algorithms for decomposing 3-D orthogonal matrices into primitive rotations”, Computers & Graphics 17 (5): 517527, doi:10.1016/0097-8493(93)90003-R, ISSN 0097-8493 

Higham, Nicholas J. (October 1 1989), “Matrix nearness problems and applications”, in Gover, M. J. C.; Barnett, S. ([dead link] Scholar search), Applications of Matrix Theory, Oxford University Press, pp. 127, ISBN 978-0-19-853625-3, http://www.maths.manchester.ac.uk/~higham/pap-misc.html 

Len, Carlos A.; Mass, Jean-Claude; Rivest, Louis-Paul (February 2006), “A statistical model for random rotations”, Journal of Multivariate Analysis 97 (2): 412430, doi:10.1016/j.jmva.2005.03.009, ISSN 0047-259X, http://archimede.mat.ulaval.ca/pages/lpr/ 

Miles, R. E. (December 1965), “On random rotations in R3”, Biometrika 52 (3/4): 636639, doi:10.2307/2333716, ISSN 0006-3444 

Moler, Cleve; Morrison, Donald (1983), “Replacing square roots by pythagorean sums”, IBM Journal of Research and Development 27 (6), ISSN 0018-8646, http://domino.watson.ibm.com/tchjr/journalindex.nsf/0b9bc46ed06cbac1852565e6006fe1a0/0043d03ee1c1013c85256bfa0067f5a6?OpenDocument 

Murnaghan, Francis D. (1950), “The element of volume of the rotation group”, Proceedings of the National Academy of Sciences 36 (11): 670672, doi:10.1073/pnas.36.11.670, ISSN 0027-8424, http://www.pnas.org/content/vol36/issue11/ 

Murnaghan, Francis D. (1962), The Unitary and Rotation Groups, Lectures on applied mathematics, Washington: Spartan Books 

Prentice, Michael J. (1986), “Orientation statistics without parametric assumptions”, Journal of the Royal Statistical Society. Series B (Methodological) 48 (2): 214222, ISSN 0035-9246 

Shepperd, Stanley W. (Mayune 1978), “Quaternion from rotation matrix”, AIAA Journal of Guidance, Control and Dynamics 1 (3): 223224, ISSN 0731-5090 

Shoemake, Ken (1994), “Euler angle conversion”, in Paul Heckbert, Graphics Gems IV, San Diego: Academic Press Professional, pp. 222229, ISBN 978-0-12-336155-4, http://www.graphicsgems.org/ 

Stuelpnagel, John (October 1964), “On the parameterization of the three-dimensional rotation group”, SIAM Review 6 (4): 422430, doi:10.1137/1006093, ISSN 0036-1445  (Also NASA-CR-53568.)

Varadarajan, V. S. (1984), Lie Groups, Lie Algebras, and Their Representation, Springer, ISBN 978-0-387-90969-1  (GTM 102)

Wedderburn, J. H. M. (1934) ([dead link] Scholar search), Lectures on Matrices, AMS, ISBN 978-0-8218-3204-2, http://www.ams.org/online_bks/coll17/ 

External links

Rotation matrices at Mathworld

Math Awareness Month 2000 interactive demo (requires Java)

Rotation Matrices at MathPages

(Italian) A parametrization of SOn(R) by generalized Euler Angles

Categories: Rotational symmetry | MatricesHidden categories: Articles to be merged from October 2009 | All articles to be merged | All

Pages: 1 2 3 4 5 6 7 8 9 10